Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38244217

RESUMO

Aminergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila, the ortholog of noradrenaline, octopamine, is required for ovulation as well as several other female reproductive processes. Two octopamine receptors have already been shown to be expressed in the Drosophila reproductive tract and to be required for egg-laying: OAMB and Octß2R. The Drosophila genome contains 4 additional octopamine receptors-Octα2R, Octß1R, Octß3R, and Oct-TyrR-but their cellular patterns of expression in the reproductive tract and potential contribution(s) to egg-laying are not known. In addition, the mechanisms by which OAMB and Octß2R regulate reproduction are incompletely understood. Using a panel of MiMIC Gal4 lines, we show that Octα2R, Octß1R, Octß3R, and Oct-TyrR receptors are not detectable in either epithelium or muscle but are clearly expressed in neurons within the female fly reproductive tract. Optogenetic activation of neurons that express at least 3 types of octopamine receptors stimulates contractions in the lateral oviduct. We also find that octopamine stimulates calcium transients in the sperm storage organs and that its effects in spermathecal, secretory cells, can be blocked by knock-down of OAMB. These data extend our understanding of the pathways by which octopamine regulates egg-laying in Drosophila and raise the possibility that multiple octopamine receptor subtypes could play a role in this process.


Assuntos
Proteínas de Drosophila , Drosophila , Receptores de Amina Biogênica , Animais , Feminino , Masculino , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Octopamina/metabolismo , Sêmen/metabolismo , Proteínas de Drosophila/metabolismo , Mamíferos
2.
Curr Res Physiol ; 6: 100101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409154

RESUMO

Monoamine neurotransmitters such as noradrenalin are released from both synaptic vesicles (SVs) and large dense-core vesicles (LDCVs), the latter mediating extrasynaptic signaling. The contribution of synaptic versus extrasynaptic signaling to circuit function and behavior remains poorly understood. To address this question, we have previously used transgenes encoding a mutation in the Drosophila Vesicular Monoamine Transporter (dVMAT) that shifts amine release from SVs to LDCVs. To circumvent the use of transgenes with non-endogenous patterns of expression, we have now used CRISPR-Cas9 to generate a trafficking mutant in the endogenous dVMAT gene. To minimize disruption of the dVMAT coding sequence and a nearby RNA splice site, we precisely introduced a point mutation using single-stranded oligonucleotide repair. A predicted decrease in fertility was used as a phenotypic screen to identify founders in lieu of a visible marker. Phenotypic analysis revealed a defect in the ovulation of mature follicles and egg retention in the ovaries. We did not detect defects in the contraction of lateral oviducts following optogenetic stimulation of octopaminergic neurons. Our findings suggest that release of mature eggs from the ovary is disrupted by changing the balance of VMAT trafficking between SVs and LDCVs. Further experiments using this model will help determine the mechanisms that sensitize specific circuits to changes in synaptic versus extrasynaptic signaling.

3.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205438

RESUMO

Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.

4.
iScience ; 25(8): 104697, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35880044

RESUMO

Octopamine is essential for egg-laying in Drosophila melanogaster, but the neuronal pathways and receptors by which it regulates visceral muscles in the reproductive tract are not known. We find that the two octopamine receptors that have been previously implicated in egg-laying-OAMB and Octß2R-are expressed in octopaminergic and glutamatergic neurons that project to the reproductive tract, peripheral ppk(+) neurons within the reproductive tract and epithelial cells that line the lumen of the oviducts. Further optogenetic and mutational analyses indicate that octopamine regulates both oviduct contraction and relaxation via Octß2 and OAMB respectively. Interactions with glutamatergic pathways modify the effects of octopamine. Octopaminergic activation of Octß2R on glutamatergic processes provides a possible mechanism by which octopamine initiates lateral oviduct contractions. We speculate that aminergic pathways in the oviposition circuit may be comparable to some of the mechanisms that regulate visceral muscle contractility in mammals.

5.
Biochim Biophys Acta Biomembr ; 1862(12): 183308, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32305263

RESUMO

Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurotransmissores/metabolismo , Proteínas Vesiculares de Transporte de Neurotransmissores/metabolismo , Acetilcolina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Células Fotorreceptoras/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Gen Comp Endocrinol ; 278: 79-88, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543770

RESUMO

Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.


Assuntos
Antenas de Artrópodes/inervação , Corte , Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Receptores de Peptídeos/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Masculino , Interferência de RNA , Receptores de Peptídeos/genética
7.
J Gerontol A Biol Sci Med Sci ; 72(2): 173-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27093874

RESUMO

The Drosophila GeneSwitch system facilitates the spatial and temporal control of gene expression through dietary supplementation of mifepristone (RU486). Because experimental and control groups differ only by treatment with RU486, confounding results from using flies of different genetic backgrounds are eliminated, making GeneSwitch especially useful in studies of aging. However, the effect of RU486 itself on longevity has not been well characterized, particularly in relation to nutritional states known to affect lifespan. Here, we show that RU486 has dose- and diet-dependent effects on longevity in both sexes. On low nutrient diets, RU486 supplementation reduces total food consumption, perhaps exacerbating undernutrition to shorten life. RU486 also inhibits proboscis extension responses to low nutrient diets, suggesting that RU486 has an aversive taste which leads to decreased food consumption and diminished longevity. RU486 is not detrimental to fly lifespan on high nutrient food, correlating with reduced effects of the drug on palatability and total consumption on rich diets. Our results highlight the critical importance of considering how food palatability and nutrient intake might be altered by dietary or drug manipulations in studies of aging and behavior.


Assuntos
Drosophila/efeitos dos fármacos , Drosophila/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mifepristona/farmacologia , Animais , Feminino , Masculino
8.
Elife ; 52016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27873574

RESUMO

Food consumption is thought to induce sleepiness. However, little is known about how postprandial sleep is regulated. Here, we simultaneously measured sleep and food intake of individual flies and found a transient rise in sleep following meals. Depending on the amount consumed, the effect ranged from slightly arousing to strongly sleep inducing. Postprandial sleep was positively correlated with ingested volume, protein, and salt-but not sucrose-revealing meal property-specific regulation. Silencing of leucokinin receptor (Lkr) neurons specifically reduced sleep induced by protein consumption. Thermogenetic stimulation of leucokinin (Lk) neurons decreased whereas Lk downregulation by RNAi increased postprandial sleep, suggestive of an inhibitory connection in the Lk-Lkr circuit. We further identified a subset of non-leucokininergic cells proximal to Lkr neurons that rhythmically increased postprandial sleep when silenced, suggesting that these cells are cyclically gated inhibitory inputs to Lkr neurons. Together, these findings reveal the dynamic nature of postprandial sleep.


Assuntos
Drosophila/fisiologia , Ingestão de Alimentos , Período Pós-Prandial , Sono , Animais , Neurônios/fisiologia
9.
J Nutr ; 145(12): 2789-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26491123

RESUMO

BACKGROUND: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. OBJECTIVES: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. METHODS: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. RESULTS: An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. CONCLUSIONS: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival.


Assuntos
Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Longevidade/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Mutação , Paladar/genética
10.
Cell Rep ; 10(6): 865-872, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25683709

RESUMO

Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose) to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

11.
Nat Methods ; 11(5): 535-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681694

RESUMO

Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the capillary feeder (CAFE), food labeling with a radioactive tracer or colorimetric dye and observations of proboscis extension (PE). We show that the CAFE and radioisotope labeling provide the most consistent results, have the highest sensitivity and can resolve differences in feeding that dye labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of methods for measuring food intake will greatly advance Drosophila studies of nutrition, behavior and disease.


Assuntos
Comportamento Animal , Drosophila melanogaster/fisiologia , Ingestão de Alimentos , Comportamento Alimentar , Animais , Colorimetria , Feminino , Genética Comportamental/métodos , Masculino , Traçadores Radioativos , Reprodutibilidade dos Testes , Projetos de Pesquisa , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...